aracs.ru

Турбины и установки газотурбинные. Другие особенности газотурбинных установок. Газотурбинные установки на выставке

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Описание технологической схемы установки утилизации теплоты отходящих газов технологической печи. Расчет процесса горения, состав топлива и средние удельные теплоемкости газов. Расчет теплового баланса печи и ее КПД. Оборудование котла-утилизатора.

    курсовая работа , добавлен 07.10.2010

    Определение горючей массы и теплоты сгорания углеводородных топлив. Расчет теоретического и фактического количества воздуха, необходимого для горения. Состав, количество, масса продуктов сгорания. Определение энтальпии продуктов сгорания для нефти и газа.

    практическая работа , добавлен 16.12.2013

    Назначение, устройство, составные части и принцип действие комплекса "Метан" как самостоятельной газовой защиты шахты. Проверка работоспособности оборудования. Измерение метана в атмосфере и срабатывание аппаратуры при превышении концентрации метана.

    лабораторная работа , добавлен 15.10.2009

    Каталитическое сжигание метана. Поиск методов снижения концентрации оксидов азота. Условия приготовления и исследование физико-химических характеристик палладиевого и оксидного катализаторов, нанесенных на ячеисто-каркасный металлический носитель.

    дипломная работа , добавлен 19.12.2011

    Устройство котла-утилизатора П-83. Порядок определения энтальпий газов и коэффициента использования тепла. Особенности расчета пароперегревателей, испарителей и экономайзеров высокого и низкого давления, а также дополнительного и кипящего экономайзеров.

    контрольная работа , добавлен 25.06.2010

    Анализ энергетического хозяйства цеха теплогазоснабжения ОАО "Урал Сталь". Реконструкция котла-утилизатора КСТ-80 с целью установки конденсационной турбины. Автоматизация и механизация производственных процессов. Безопасность труда и экологичность.

    дипломная работа , добавлен 17.02.2009

    Технология производства серной кислоты и продуктов на ее основе. Разработка конструкции узлов котла-утилизатора. Механизация обслуживания и ремонтных работ участка котла-утилизатора. Разработка технологического процесса изготовления "барабана канатного".

    дипломная работа , добавлен 09.11.2016

В соответствии с назначением СЭУ весь комплекс ее механиз­мов и систем условно делят на четыре группы:

Главную установку, предназначенную для обеспечения дви­жения судна:

Вспомогательную, обеспечивающую потребности судна в различных видах энергии на стоянке, при подготовке главной установки к действию и бытовые потребности судна;

Электроэнергетическую, обеспечивающую судно различными видами электроэнергии;

Механизмы и системы общесудового назначения.

Газотурбинная установка может быть главной или се состав­ной частью, может быть приводом электрических генераторов, различных механизмов общесудового назначения. В последних двух случаях ГТУ называют вспомога­тельной.

Судовая энергетическая установка состоит из одного или нескольких комплексов двигатель - движитель, каждый из которых включает движитель, валопровод и одну главную установку.

Главная установка в свою очередь состоит из одного или нескольких однотипных (в КУ, возможно, и разнотипных) двигателей и общей для них передачи, подводящей энергию к движителю через линию вала. Если двигатели главной установки газотурбинные, и она обеспечивает ход и маневрирование судна, ее называют газотурбинной всережимной. В комбинированной установке газотурбинная, как правило, является ускорительной (форсажной), обеспечивающей судну приращение скорости переднего хода.

Газотурбинный двигатель. Газотурбинный двигатель - тепловая машина, предназначенная, для преобразования энергии сгорания топлива в механическую работу на валу двигателя. Основными элементами ГТД являются компрессор, камера сгорания и газовая турбина.

Наибольшее распространение получили ГТД с непрерывным сгоранием топлива при постоянном давлении. Теоретический простой цикл ГТД на диаграмме Т-S: 1-2- изоэнтропийный (адиабатический) процесс повышения давления воздуха в компрессоре; 2-3-изобарный подвод теплоты в КС; 3-4 - изоэнтропийный (адиабатический) процесс расширения газа в турбине; 4-1-изобарный отвод теплоты в атмосферу.



Большая часть работы расширения газа в турбине расходуется на сжатие воздуха в компрессоре, остальная часть производимой турбиной ГТД работы обычно после преобразова­ния передается к потребителю мощности и называется полезной работой.

В так называемых сложных циклах ГТД, где можно получить более высокий КПД, или большую полезную работу, предусматри­вается либо промежуточное охлаждение воздуха (например, между компрессорами или их ступенями), либо вторичный подо­грев газов (в дополнительных КС между турбинами), либо реге­нерация, т.е. использование теплоты выходящих из турбин газов для предварительного подогрева сжатого воздуха, либо любое возможное сочетание названных средств. Двигатели, выполненные по сложному циклу, имеют большие массы и габариты по сравнению с ГТД простого цикла, менее маневренны, менее надежны, весьма сложны.

Существенный недостаток ГТД простого цикла - относительно низкая экономичность - может быть устранен согласованным уве­личением степени повышения давления воздуха Лк в компрессоре ГТД и температуры газа Тоз на входе в первую турбину ГТД (на выходе газа из КС), что наглядно подтверждается зависимостью КПД ГТУ от Лк при различных отношениях Тоз/То: здесь Тоз - абсолютная температура газа на выходе из КС в полных па­раметрах; То - абсолютная температура воздуха на входе в ГТУ.

Максимальное значение КПД при реально достижимой в настоя­щее время температуре Тоз=1000°С имеет место при Лк=16-21. Данную Лк можно осуществить в многоступенчатом осевом ком­прессоре; при этом в составе ГТД могут быть два последовательно установленных компрессора, каждый из которых приводится от отдельной турбины, или один компрессор, устойчивость режимов работы которого повышается вследствие применения поворотных лопаток спрямляющих аппаратов на ряде первых ступеней. При этом возможно применение дополнительных устройств, обеспечивающих устойчивость работы компрессоров, особенно на переходных режимах: лент перепуска воздуха, антипомпажных клапанов и т.д.

Собственно газовыми тур­бинами являются ТВД, ТНД. ТВ; совокупность КНД, ТНД, и со­единяющего их вала образует турбокомпрессорный блок низкого давления (ТКНД); совокупность КВД, ТВД и соединяющих их конструкций-турбокомпрессорный блок высокого давления (ТКВД): часть ГТД, включающую ТКНД, ТКВД и КС, часто на­зывают генератором газа (ГГ).

Таким образом, ГТД можно рассматривать как совокупность генератора газа и пропульсивной турбины.

Передача. Оптимальные условия работы гребного винта и пропульсивной турбины ГТД обеспечиваются обычно при различных частотах вращения. Для достижения приемлемых экономичности, масс и га­баритов частота вращения ротора пропульсивной турбины должна быть значительно выше, чем гребного винта. Снижение частоты вращения осуществляется в передаче при обязательном требова­нии минимальных потерь мощности.

Передача может выполнять и другие функции, в частности «собирать» мощности нескольких двигателей на один движитель, «раздавать» мощность теплового двигателя на несколько движителей, разобщать двигатели от дви­жителей, осуществлять реверс и т. д.

Различают передачи механические, гидравлические, электри­ческие. Последняя может работать на переменном и постоянном токе. В первом случае потери энергии в передаче составляют 6- 14%, во втором-11-19%. Для электропередач характерны большие массы и габариты: так, приходящаяся на 1 кВт масса электропередачи составляет 7-22 кг. Несомненны преимущества электропередач:

Возможность использования нереверсивного главного дви­гателя;

Удобство управления установкой;

Уменьшение длины гребных валов;

Отсутствие жесткой связи между главным двигателем и вин­том и т. д.

Чисто гидравлическая передача имеет относительно малый КПД: 95-96 и 85-88 % - соответственно гидромуфты и гидро­трансформатора переднего хода, 70-75 % -гидротрансформатора заднего хода. По этой причине их предпочитают применять в со­четании с механической передачей. Механическая (обычно зубча­тая) передача имеет высокий КПД (до 98-99 %) и находит пре­имущественное применение на судах.

Общая компоновка ГТУ. На судах применяют ГТУ двух основных типов: с ГТД про­мышленного (тяжелого) типа; с ГТД авиационного (легкого) типа. Компоновочные схемы этих ГТУ могут существенно отли­чаться. Для ГТУ второго типа характерно выполнение ГТД в рамном или безрамном варианте, с трубчатым основанием, в звукоизолирующем кожухе.

Максимально возможная часть си­стем, обеспечивающих работу ГТД, смонтирована на нем или в его раме; основные вспомогательные механизмы (например, ос­новные топливный и масляный насосы) навешены на ГТД и при­водятся от блока его вращения, в наименьшей степени изменяю­щего частоту вращения при переходе ГТД с режима на режим.

На редукторе ГТУ также смонтированы обеспечивающие его работу системы и механизмы (например, навесные маслонасосы). Связь ГТД с редуктором осуществляется посредством рессор.

Системы ГТУ включают комплексы разнообразных техниче­ских средств, при помощи которых могут быть осуществлены все эксплуатационные режимы работы установки, а также ее техни­ческое обслуживание. Условно их можно разделить на две группы. Первая группа-это комплексы технических средств, которые по­зволяют управлять установкой, т.е. задавать и поддерживать не­обходимые режимы се работы и изменять эти режимы при необхо­димости.

К ним относятся системы:

Управления, воздействующая на подачу топлива в КС, на системы пуска и реверса и другие системы, обеспечивающие под­держание и изменение режима работы;

Пуска, с помощью которой ГТУ вводится в действие;

Реверса, обеспечивающая изменение направления упора, со­здаваемого гребным винтом или другим движителем.

Ко второй группе относятся следующие системы, обеспечиваю­щие оптимальные условия для работы ГТУ:

Топливная, состоящая из технических средств, размещенных на ГТД, а также вне двигателя;

Масляная с техническими средствами на ГТД, передаче (ре­дукторе) и вне их;

Охлаждения забортной водой, размещенная обычно вне ГТУ и предназначенная для охлаждения масла ГТУ в маслоохлади­телях;

Сжатого воздуха, технические средства которой размещены как на ГТУ, так и вне установки;

Промывки проточной части;

Антиобледенительная (система обогрева входного устрой­ства ГТД) и ряд других.

Кроме того, работа ГТД на судне обеспечивается воздухоприемным и газовыпускным устройствами, системой теплоизоляции ГТД.

Судовые ГТУ промышленного типа. Примером названных установок может служить ГТУ-20 судна «Парижская коммуна». Она состоит из двух одинаковых устано­вок ГТУ-10, работающих через общий редуктор на один ВРШ. Особенностью ГТУ-20 является блокированная ТНД, что потребовало установки ВРШ.

Установки промышленного типа МS-1000, МS-3000, МS-5000, МS-7000 и их модификации фирмы «Дженерал электрик» конвер­тированы в судовые из стационарных ГТУ. Все они работают по открытому циклу с регенерацией теплоты уходящих газов для по­догрева воздуха.

Особенностью ГТУ М5-3012К является привод генератора пе­ременного тока от ТНД и постоянная частота их вращения. Глав­ный электродвигатель (ГЭД) переменного тока с постоянной ча­стотой вращения приводит в действие ВРШ. Установка М5-3012К со всеми обслуживающими механизмами и системами располо­жена на верхней палубе судна, а ГЭД - в машинном отделении.

Судовые ГТУ легкого типа. На судах такие ГТУ нашли применение в следующем исполнении:

С одним компрессором и одной турбиной;

С одним турбокомпрессором и свободной ТВ;

С двумя турбокомпрессорами и свободной ТВ.

Были проведены большие работы по конвертированию авиаци­онных ГТД для использования их на судах: в СССР - ГТУ М-25.

В США были созданы ГТД типов: LМ-100, LМ-300, LМ-1500, LМ-2500, LМ-5000, FТ-4А, FТ-4А12, FТ-4С-2 и др.; в Англия - типов «Олимп», «Тайн», «Гном» и др.

Судовые газотурбинные установки с теплоутилизирующим кон­туром (ТУК)

ГТУ М-25 мощностью 25 000 кВт эксплуатируются на судах типа «Капитан Смирнов».

Головной газотурбоход «Капитан Смирнов» - ролкер водоизмещением 35 000 т. Он предназначен для перевозки пакетированных грузов и контейнеров, имеет две ГТУ суммарной мощностью 36800 кВт. Скорость судна 27 уз. На газотурбоходе высок уровень автоматизации. В машинном отделении нет постоянной вахты.

Контролирует работу оборудования с центрального поста управления энергетической установкой один механик. Главным двигателем управляет с мостика вахтенный штурман. Оттуда же осуществляется управление мощными подруливающими устройствами, расположенными в носу и корме. Благодаря им при швартовных операциях можно обходиться без помощи портовых буксиров.

Установка ГТУ М-25 состоит из газотурбинного двигателя, редуктора и теплоутилизирующего контура, который в свою очередь включает в себя паровой котел с сепаратором пара и арматурой дистанционного управления, паровую турбину с конденсатором и вспомогательное оборудование.

Тепловая схема ГТУ дана на рис. 5.2 Атмосферный воздух засасывается КНД 6 и последовательно сжимается в КНД и КВД 5. Затем в камере сгорания 4 при постоянном давлении происходит сжигание топлива, и образовавшийся при этом газ расширяется последовательно в ТВД 3, ТНД 2 и турбине винта (ТВ) 1. Отсюда газ поступает утилизационный котел 7, где отдает теплоту питательной воде. Пар из котла направляется в силовую паровую турбину 21, совместно с ТВ вращающую через упругие муфты и редуктор 24 гребной винт. Вся мощность ТВД и ТНД полностью потребляется соответственно КВД и КНД.

Утилизационный котел (расположен над газоотводом ГТД) - водотрубный с многократной принудительной циркуляцией, в сечении имеет прямоугольную форму. Котел состоит из экономайзера, испарителя и пароперегревателя, между которыми предусмотрены пазухи для размещения опорных балок крепления трубных пакетов, осмотра и ремонта поверхности горения. Котел включает в себя также сепаратор пара, служащий для отделения пара от пароводяной смеси, поступающей из испарителя котла.

Паровая турбина состоит из регулировочной ступени в виде двухвенечного колеса и семи ступеней давления. Ее сварнолитой корпус изготавливается с корпусами (стульями) подшипников. На верхней крышке крепится паровпускной быстрозапорный клапан, а на выпускном патрубке - дроссельно-увлажнительная установка.

Ротор паровой турбины составной - с насадными дисками. Упор­ный гребень выполнен заодно с валом. Турбина имеет два опорных и один упорный подшипники. Опорные подшипники имеют стальные вкладыши, залитые баббитом. Упорный подшипник двусторонний с самоустанавливающими упорными сегментами Конденсатор двухпроточный, он одновременно является рамой, на которой располагаются турбина и вспомогательное оборудование. Редуктор позволяет подключить и отключить паровую турбину при работающем и остановленном ГТД, обеспечивает проворачивание валопровода при неработающих ГТД и паровой турбине и стопорение валопровода.

В правой части рис. 5.2 представлен теплоутилизирующий контур одного борта установки. Питательная вода из теплого ящика 15 электропитательным насосом 14 подается через двухимпульсный регулятор 12 питания в сепаратор 11 питания. Из него насос 13 многократной циркуляции подает воду в экономайзер 8. Из него вода по опускным трубам идет в испаритель 9. Затем пароводяная смесь поступает в сепаратор. Из него влажный пар направляется в пароперегреватель 10 и далее (уже перегретый пар) через главный стопорный клапан 19 - к быстрозапорному клапану 20 паровой турбины. Схемой ТУК предусматривается отбор 6000 кг/ч перегретого пара из главного паропровода на турбогенератор мощностью 1000 кВт и 2000 кг/ч насыщенного пара из сепаратора на общесудовые нужды.

Рис. 5.2 Тепловая схема ГТУ с ТУК газотурбохода «Капитан Смирнов» (одного борта)

Главный стопорный клапан открывается автоматически при давле­нии пара 0,4 МПа. При достижении давления в конденсаторе 5-6 КПа открывается быстрозапорный клапан в положение холостого хода, и паровая турбина начинает набирать частоту вращения.

Как только паровая турбина сравняется по частоте вращения с турбиной винта, происходят синхронизация и подключение паровой турбины к редуктору. Избыток пара при этом стравливается через редукционное охладительное устройство 22 и дроссельно-увлажнительное устройство 23 в выпускной патрубок турбины на конденсатор 18. Оттуда электроконденсатный насос 17 возвращает конденсат в теплый ящик через регулятор уровня конденсата 16. После прогрева паровой турбины на режиме холостого хода в течение 12-15 мин БЗК открывается полностью, и паровая турбина начинает работать в режиме полной мощности.

Газотурбинная установка может устойчиво эксплуатироваться как при работе с ТУК, так и без него. Включение ТУК происходит при подаче питательной воды в котел и может производиться при любом режиме работы ГТД (горячий пуск) и при неработающем ГТД (холодный пуск). Пуск ТУК и управление им осуществляются с центрального поста управления. Отбор пара на турбогенератор производится вручную.

В установке предусмотрена возможность работы перекрестным путем. В этом случае работает газовая турбина с ТУК одного борта, пар подается на паровую турбину другого борта. При этом газовая турбина этого борта не работает (снимают рессору от ТВ к редуктору), при такой работе подача топлива уменьшается почти в 2 раза (при скорости судна примерно 20 уз).

Ресурс всего агрегата составляет 100000 ч (примерно 25 лет). В то же время ресурс ГТД до заводского ремонта составляет 25000 ч. Пос­ле заводского ремонта ресурс ГТД восстанавливается. Технический ресурс ГТД (до замены) равен 50000 ч (приблизительно 12,5 года).

При наличии запасного ГТД на судне (или обменного фонда ГТД) его замена может быть проведена силами судового экипажа в течение двух суток, т.е. во время погрузочно-разгрузочных работ в порту. Любой из навешенных на ГТД агрегатов может быть заменен в течение 1-2 ч.

Газотурбинный двигатель (рис. 5.3) изготавливается в морском (корабельном) исполнении.

Он состоит из осевых расположенных последовательно компрессоров - семиступенчатого КНД 1 и девятиступенчатого КВД 2 трубчато-кольцевой камеры сгорания 3, в корпусе: которой находятся десять жаровых труб 4 с форсунками и из расположенных последовательно двухступенчатых ТВД 5 и ТНД 6 и четырехступенчатой ТВ 7.

Рис. 5.3 ГТУ М-25 со схематическим разрезом ГТД

Корпуса компрессоров, камеры сгорания и трубки соединяются между собой последовательно вертикальными фланцами и образуют единый корпус.

Вопросы для самопроверки

Устройство газотурбинного двигателя.

Устройство газотурбинной установки

Принцип работы ГТУ и ГТД.

Имеют единичную электрическую мощность от двадцати киловатт (микротурбины) и до нескольких десятков мегаватт - это классические газовые турбины.

Электрический КПД современных газотурбинных установок составляет 33–39% . КПД газотурбинных установок, в целом ниже, чем у газопоршневых силовых агрегатов. Но с газотурбинными установками значительно упрощается задача получения высокой мощности электростанции. При реализации всего теплового потенциала газовых турбин значимость высокого электрического КПД для потребителей становится менее актуальной. С учетом высокой температуры выхлопных газов в мощных газотурбинных установках имеется возможность комбинированного использования газовых и паровых турбин . Такой инженерный подход позволяет существенно повысить эффективность использования топлива и увеличивает электрический КПД установок до 57–59%. Этот способ хорош, но ведет к удорожанию и усложнению проекта.

Соотношение производимой электрической энергии к тепловой энергии у составляет ~ 1:2. То есть газотурбинная установка с электрической мощностью 10 МВт способна выдать ~ 20 МВт тепловой энергии. Для перевода МВт в ГКал используется коэффициент 1,163 (1,163 МВт = 1163 кВт = 1 Гкал ).

В зависимости от потребностей дополнительно оснащаются паровыми или водогрейными котлами , что дает возможность иметь пар различного давления для производственных потребностей, или горячую воду со стандартными температурами (ГВС). При комбинированном использовании энергии двух видов коэффициент использования топлива (КИТ) газотурбинной тепловой электростанции увеличивается до 90%.

Режим работы электростанции, с использованием сопутствующей тепловой энергии имеет свой технический термин - когенерация .

Возможность получения от газотурбинных установок больших количеств бесплатной тепловой энергии предполагает возврат более быстрый возврат.

Применение газотурбинных установок в качестве силового оборудования для мощных ТЭС и мини–ТЭЦ оправдано экономически, так как на сегодняшний день электростанции, работающие на газовом топливе , имеют наиболее привлекательную для потребителя удельную стоимость строительства и низкие затраты при последующей эксплуатации.

Избытки бесплатной тепловой энергии в любое время года дают возможность, посредством чиллеров - АБХМ , без затрат электричества, наладить полноценное кондиционирование помещений любого назначения. Охлажденный таким образом теплоноситель можно применять в промышленных целях, в различных производственных циклах. Эта технология называется тригенерация .

Эффективность использования газотурбинных установок обеспечивается в широком диапазоне электрических нагрузок от минимальных 1–3% до максимальных 110–115%.

Позитивным фактором использования газотурбинных установок - ГТУ непосредственно в местах проживания людей, является то, что содержание вредных выбросов у них минимально и находится на уровне 9–25 ppm . Такие отличные экологические качества позволяют без проблем размещать газотурбинные установки в непосредственной близости от местонахождения людей.

Этот критерий газотурбинных установок - ГТУ незначительно лучше, чем у ближайших конкурентов газовых турбин - поршневых электростанций .

При использовании газотурбинных установок потребитель получает экономию денежных средств на катализаторах и при строительстве дымовых труб .

На фото изображена газотурбинная установка SIEMENS SGT–700 мощностью 29 МВт.

Газотурбинные установки имеют незначительные вибрации и шумы в пределах 65–75 дБ (что соответствует по шкале уровня шума звуку пылесоса на расстоянии 1 метр). Как правило, специальная звуковая изоляция для подобного высокотехнологичного генерационного оборудования не нужна.

Газотурбинные установки обладают относительно компактными размерами и небольшим удельным весом. Допускается монтаж ГТУ на техническом этаже здания или крышное расположение маломощных газотурбинных установок. Это полезное свойство ГТУ является важным финансовым фактором в городской застройке, потому что оно позволяет экономить дорогостоящие дефицитные квадратные метры и во многих ситуациях дает больше технического простора инженерам для решения задачи размещения автономной электростанции.

Газотурбинные установки - ГТУ отличаются высокой надежностью и неприхотливостью. Имеются подтвержденные заводские данные о безостановочной работе некоторых газотурбинных установок - ГТУ в течение 5–7 лет.

Некоторые производители современных газовых турбин осуществляют ремонт узлов без транспортировки на завод–изготовитель, а другие производители заранее привозят сменную турбину или камеру сгорания, что существенно снижает сроки выполнения капитального ремонта до 4–6 рабочих дней. Эти меры снижают затраты на обслуживание установок.

Преимуществом газотурбинных установок - ГТУ является длительный ресурс (полный до 200 000 часов, до капитального ремонта 30000–60000 часов). В рабочем цикле газотурбинных установках моторное масло не применяется. Имеется небольшой объем редукторного масла, частота замены которого редка.

Отсутствие водяного охлаждения выгодно отличает газотурбинные установки от поршневых электростанций. Многие марки ГТУ надежно функционируют на различных видах газового топлива , включая попутный нефтяной газ (ПНГ) . Но, как и для других видов электростанций, попутный газ с содержанием сероводорода требует специальной подготовки. Без современной установки - станции подготовки газа жизненный цикл электростанции любого типа сокращается в 4–5 раз. Последствия эксплуатации ГПЭС или ГТУ без станций подготовки ПНГ зачастую носят просто фатальный характер.

Газотурбинные установки подготовлены для эксплуатации в различных климатических условиях. Строительство газотурбинных установок в отдаленных районах позволяет получить экономию финансовых средств за счет исключения дорогостоящего строительства линий электропередач (ЛЭП). В местах с более развитой инфраструктурой газотурбинные установки повышают надежность электрического и теплового снабжения.

Одним из вариантов применения газотурбинных установок - ГТУ является концепция блочно-модульных систем (кластеров). Модульные газотурбинные установки - ГТУ состоят из унифицированных энергоблоков и общих управляющих систем, что позволяет за короткий период времени увеличивать электрическую мощность с наименьшими финансовыми и временными затратами.

Блочные вариации газотурбинных установок - ГТУ обеспечивают высокий уровень заводской готовности. Размеры модулей газотурбинных установок - ГТУ, как правило, стандартны. Существуют мобильные ГТУ , которые можно оперативно перемещать с одного объекта энергоснабжения на другой, но такие установки, как правило, не имеют возможности для производства тепловой энергии.

Автоматизированные системы управления газотурбинной электростанции позволяют отказаться от непосредственного присутствия обслуживающего персонала. Мониторинг работы газотурбинных установок - ГТУ может осуществляться удаленно через различные телекоммуникационные каналы. При возникновении внештатных ситуаций предусмотрены комплексные системы автоматической защиты и пожаротушения.

Газотурбинные установки - ГТУ - принцип работы

В газотурбинных установках - ГТУ многоступенчатый компрессор сжимает атмосферный воздух, и подает его под высоким давлением в камеру сгорания. В камеру сгорания газотурбинных установок - ГТУ подается и определенное количество топлива. При столкновении на высокой скорости топливо и воздух воспламеняются. Топливовоздушная смесь сгорает, выделяя большое количество энергии. Затем, энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струями раскаленного газа лопаток турбины.

Газотурбинная установка (ГТУ) состоит из двух основных частей - это силовая турбина и генератор, которые размещаются в одном корпусе. Поток газа высокой температуры воздействует на лопатки силовой турбины (создает крутящий момент). Утилизация тепла посредством теплообменника или котла-утилизатора обеспечивает увеличение общего КПД установки.

ГТУ может работать как на жидком, так и на газообразном топливе. В обычном рабочем режиме - на газе, а в резервном (аварийном) - автоматически переключается на дизельное топливо. Оптимальным режимом работы газотурбинной установки является комбинированная выработка тепловой и электрической энергии. ГТУ может работать как в базовом режиме, так и для покрытия пиковых нагрузок.

Простая газотурбинная установка непрерывного горения и устройство её основных элементов

Принципиальная схема простой газотурбинной установки показана на рисунке 1.

Рисунок 1. Принципиальна схема ГТУ: 1 - компрессор; 2 - камера сгорания; 3 - газовая турбина; 4 – электрогенератор

Компрессор 1 засасывает воздух из атмосферы, сжимает его до определенного давления и подает в камеру сгорания 2. Сюда же непрерывно поступает жидкое или газообразное топливо. Сгорание топлива при такой схеме происходит непрерывно, при постоянном давлении, поэтому такие ГТУ называются газотурбинными установками непрерывного сгорания или ГТУ со сгоранием при постоянном давлении.

Горячие газы, образовавшиеся в камере сгорания в результате сжигания топлива, поступают в турбину 3. В турбине газ расширяется, и его внутренняя энергия преобразуется в механическую работу. Отработавшие газы выходят из турбины в окружающую среду (в атмосферу).

Часть мощности, развиваемой газовой турбиной, затрачивается на вращение компрессора, а оставшаяся часть (полезная мощность) отдается потребителю. Мощность, потребляемая компрессором, относительно велика и в простых схемах при умеренной температуре рабочей среды может в 2-3 раза превышать полезную мощность ГТУ. Это означает, что полная мощность собственно газовой турбины долгий быть значительно больше полезной мощности ГТУ.

Так как газовая турбина может работать только при наличии сжатого воздуха, получаемого только от компрессора, приводимого во вращение турбиной, очевидно, что пуск ГТУ должен осуществляться от постороннего источника энергии (пускового мотора), с помощью которого компрессор вращается до тех пор, пока из камеры сгорания не начнет поступать газ определённых параметров и в количестве, достаточном для начала работы газовой турбины.

Из приведенного описания ясно, что газотурбинная установка состоит из трех основных элементов: газовой турбины, компрессора и камеры сгорания. Рассмотрим принцип действия и устройство этих элементов.

Турбина. На рисунке 2 показана схема простой одноступенчатой турбины. Основными частями её являются; корпус (цилиндр.) турбины 1, в котором укреплены направляющие лопатки 2, рабочие лопатка 3, установленные по всей окружности на ободе диска 4, закрепленного на валу 5. Вал турбины вращается в подшипниках 6. В местах выход вала из корпуса установлены концевые уплотнения 7, ограничивающие утечку горячих газов из корпуса турбин. Все вращающиеся части, турбины (рабочие лопатки, диск, вал) составляют её ротор. Корпус с неподвижными направляющими лопатками и уплотнениями образует статор турбины. Диск с лопатками образует рабочее колесо.

Рисунок 2. Схема одноступенчатой турбины

Совокупность ряда направлявших и рабочих лопаток называется турбинной ступенью. На рисунке 3 вверху изображена схема такой турбинной ступени и внизу дано сечение направляющих и рабочих лопаток цилиндрической поверхности а-а, развернутой затем на плоскость чертежа.

Рисунок 3. Схема турбинной ступени

Направляющие лопатки 1 образуют в сечении суживающиеся каналы, называемые соплами. Каналы, образованные рабочими лопатками 2, также обычно имеют суживающуюся форму.

Горячий газ при повышенном давлении поступает в сопла турбины, где происходит его расширение и соответствующее увеличение скорости. При этом давление и температура газа падают. Таким образом, в соплах турбины совершается преобразование потенциальной энергии газа в кинетическую энергии. После выхода из сопел газ попадает в межлопаточные каналы рабочих лопаток, где изменяет свое направление. При обтекании газом рабочих лопаток давление на их вогнутой поверхности оказывается большим, чем на выпуклой, и под влиянием этой разности давлений происходит вращение рабочего колеса (направление вращение на рисунке 3 показано стрелкой u). Таким образом, часть кинетической энергии газа преобразуется на рабочих лопатках в механическую оказаться недопустимей по соображениям прочности рабочих лопаток или диска турбины. В таких случаях турбины выполняются многоступенчатыми. Схема многоступенчатой турбины показана на рисунке 4.

Рисунок 4. Схема многоступенчатой турбины: 1-подшипники; 2-концевые уплотнения; 3-входной патрубок; 4-корпус; 5-направляющие лопатки; 6-рабочие лопатки; 7-ротор; 8-выходной патрубок турбины

Турбина состоит из ряда последовательно расположенных отдельных ступеней, в которых происходит постепенное расширение газа. Падение давления, приходящееся на каждую ступень, а, следовательно, и скорость с1 в каждой ступени такой турбины, меньше, чем в одноступенчатой. Число ступеней может быть выбрано таким, чтобы при заданной окружной скорости и было получено желаемое отношение

.

Компрессор. Схема многоступенчатого осевого компрессора изображена на рисунке 5.

Рисунок 5. Схема многоступенчатого осевого компрессора: 1-входной патрубок; 2-концевые уплотнения; 3-подшипники; 4-входной направляющий аппарат; 5-рабочие лопатки; 6-направляющие лопатки; 7-корпус 8-спрямляющий аппарат; 9-диффузор; 10-выходной патрубок; 11-ротор.

Его основными составными частями являются: ротор 2 с закрепленными на нем рабочими лопатками 5, корпус 7 (цилиндр.), к которому крепятся направляющие лопатки 6 и концевые уплотнения 2, и подшипники 3. Совокупность одного ряда вращающихся рабочих лопаток и одного ряда расположенных за ними неподвижных направляющих лопаток называется ступенью компрессора. Засасываемый компрессором воздух последовательно проходит через следующие элементы компрессора, показанные на рисунке 5: входной патрубок 1, входной направляющий аппарат 4, группу ступеней 5, 6, спрямляющий аппарат 8, диффузор 9 и выходной патрубок 10.

Рассмотрим назначение этих элементов. Входной патрубок предназначен для равномерного подвода воздуха из атмосферы к входному направляющему аппарату, который должен придать необходимое направление потоку перед входом в первую степень. В ступенях воздух сжимается за счет передачи механической энергии потоку воздуха от вращающихся лопаток. Из последней ступени воздух поступает в спрямляющий аппарат, предназначенный для придания потоку осевого направления перед входом в диффузор. В диффузоре продолжается сжатие газа за счет понижения его кинетической энергии. Выходной патрубок предназначен для подачи воздуха от диффузора к перепускному трубопроводу. Лопатки компрессора 1 (рисунок 6) образуют ряд расширяющихся каналов (диффузоров). При вращении ротора воздух входит в межлопаточные каналы с большой относительной скоростью (скорость движения воздуха, наблюдаемая с движущихся лопаток). При движении воздуха по этим каналам его давление повышается в результате уменьшения относительной скорости. В расширяющихся каналах, образованных не-подвижными направляющими лопатками 2, происходит дальнейшее повышение давления воздуха, сопровождающееся соответствующим уменьшением его кинетической энергии. Таким образом, преобразование энергии в ступени компрессора происходит по сравнению с турбиной ступенью в обратном направлении.

Рисунок 6. Схема ступени осевого компрессора

Камера сгорания

Назначение камеры сгорания заключается в повышения температуры рабочего тела за счет сгорания топлива в среде сжатого воздуха. Схема камеры сгорания показана на рисунке 7.

Рисунок 7. Камера сгорания

Сгорание топлива, впрыскиваемого через форсунку 1, происходит в зоне горения камеры, ограниченной жаровой трубой 2. В эту зону поступает только такое количество воздуха, которое необходимо для полного и интенсивного сгорания топлива (этот воздух называемся первичным).

Поступающий в зону горения воздух проходит через завихритель 3, который способствует хорошему перемешиванию топлива с воздухом. В зоне горения температура газов достигает 1300... 2000°С. По условиям прочности лопаток газовых турбин такая температура недопустима. Поэтому получающиеся в зоне горения камеры горячие газы разбавляются холодным воздухом, который называется вторичным. Вторичный воздух протекает по кольцевому пространству между жаровой трубкой 2 и корпусом 4. Часть этого воздуха поступает к продуктам сгорания через окна 5, а остальная часть смешивается с горячими глазами после жаровой трубы. Таким образом, компрессор должен подавать в камеру сгорания в несколько раз больше воздуха, чем необходимо для сжигания топлива, а поступающие в турбину продукты сгорания получаются сильно разбавленными воздухом и охлажденными.

Газотурбинные установки (ГТУ) - тепловые машины, в которых тепловая энергия газообразного рабочего тела преобразуется в механическую энергию. Основными компонентами являются: компрессор, камера сгорания и газовая турбина. Для обеспечения работы и управления в установке присутствует комплекс объединенных между собой вспомогательных систем. ГТУ в совокупности с электрическим генератором называют газотурбинным агрегатом. Вырабатываемая мощность одного устройства составляет от двадцати киловатт до десятков мегаватт. Это классические газотурбинные установки. Производство электроэнергии на электростанции осуществляется при помощи одной или нескольких ГТУ.

Устройство и описание

Газотурбинные установки состоят из двух основных частей, расположенных в одном корпусе, - газогенератора и силовой турбины. В газогенераторе, включающем в себя камеру сгорания и турбокомпрессор, создается поток газа высокой температуры, воздействующего на лопатки силовой турбины. При помощи теплообменника производится утилизация выхлопных газов и одновременное производство тепла через водогрейный или паровой котел. Работа газотурбинных установок предусматривает использование двух видов топлива - газообразного и жидкого.

В обычном режиме ГТУ работает на газе. В аварийном или резервном при прекращении подачи газа осуществляется автоматический переход на жидкое (дизельное) топливо. В оптимальном режиме газотурбинные установки комбинированно производят электрическую и тепловую энергию. По количеству вырабатываемой тепловой энергии ГТУ значительно превосходят газопоршневые устройства. Турбоагрегаты используются на электростанциях как для работы в базовом режиме, так и для компенсирования пиковых нагрузок.

История создания

Идея использовать энергию горячего газового потока была известна еще с древних времен. Первый патент на устройство, в котором были представлены те же основные составляющие, что и в современных ГТУ, был выдан англичанину Джону Барберу в 1791 году. Газотурбинная установка включала в себя компрессоры (воздушный и газовый), камеру сгорания и активное турбинное колесо, но так и не получила практического применения.

В 19-м и начале 20-го века многие ученые и изобретатели всего мира разрабатывали установку, пригодную для практического применения, но все попытки были безуспешными ввиду низкого развития науки и техники тех времен. Полезная мощность, выдаваемая опытными образцами, не превышала 14% при низкой эксплуатационной надежности и конструктивной сложности.

Впервые газотурбинные установки электростанций были использованы в 1939 году в Швейцарии. В эксплуатацию была введена электростанция с турбогенератором, выполненным по простейшей схеме мощностью 5000 кВт. В 50-х годах эта схема была доработана и усложнена, что позволило увеличить КПД и мощность до 25 МВт. Производство газотурбинных установок в промышленно развитых странах сформировалось в единый уровень и направление развития по мощностям и параметрам турбоагрегатов. Суммарная мощность выпущенных в Советском Союзе и России газотурбинных установок исчисляется миллионами кВт.

Принцип работы ГТУ

Атмосферный воздух поступает в компрессор, сжимается и под высоким давлением через воздухоподогреватель и воздухораспределительный клапан направляется в камеру сгорания. Одновременно через форсунки в камеру сгорания подается газ, который сжигается в воздушном потоке. Сгорание газовоздушной смеси образует поток раскаленных газов, который с высокой скоростью воздействует на лопасти газовой турбины, заставляя их вращаться. Тепловая энергия потока горячего газа преобразуется в механическую энергию вращения вала турбины, который приводит в действие компрессор и электрогенератор. Электроэнергия с клемм генератора через трансформатор направляется в потребительскую электросеть.

Горячие газы через регенератор поступают в водогрейный котел и далее через утилизатор в дымовую трубу. Между водогрейным котлом и центральным тепловым пунктом (ЦТП) при помощи сетевых насосов организована циркуляция воды. Нагретая в котле жидкость поступает в ЦТП, к которому осуществляется подключение потребителей. Термодинамический цикл газотурбинной установки состоит из адиабатного сжатия воздуха в компрессоре, изобарного подвода теплоты в камере сгорания, адиабатного расширения рабочего тела в газовой турбине, изобарного отвода теплоты.

В качестве топлива для ГТУ используется природный газ - метан. В аварийном режиме, в случае прекращения подачи газа, ГТУ переводится на частичную нагрузку, а в качестве резервного топлива используются дизельное топливо или сжиженные газы (пропан-бутан). Возможные варианты работы газотурбинной установки: отпуск электроэнергии или совмещенный отпуск электричества и тепловой энергии.

Когенерация

Производство электричества с одновременной выработкой сопутствующей тепловой энергии называется когенерацией. Эта технология позволяет значительно повысить экономическую эффективность использования топлива. В зависимости от нужд газотурбинная установка дополнительно может оснащаться водогрейными или паровыми котлами. Это дает возможность получать горячую воду или пар различного давления.

При оптимальном использовании двух видов энергии достигается максимальный экономический эффект когенерации, а коэффициент использования топлива (КИТ) достигает 90%. В этом случае тепло выхлопных газов и тепловая энергия из системы охлаждения агрегатов, вращающих электрогенераторы (по сути, бросовая энергия), используется по назначению. При необходимости утилизируемое тепло может использоваться для производства холода в абсорбционных машинах (тригенерация). Система когенерации состоит из четырех ключевых частей: первичный двигатель (газовая турбина), электрогенератор, система теплоутилизации, система управления и контроля.

Управление

Выделяют два основных режима работы, при которых эксплуатируются газотурбинные установки:

  • Стационарный. В этом режиме турбина работает при фиксированной номинальной или неполной нагрузке. До недавнего времени стационарный режим был основным для ГТУ. Остановка турбины проводилась несколько раз в год для плановых ремонтов или в случае неполадок.
  • Переменный режим предусматривает возможность изменения мощности ГТУ. Необходимость изменять режим работы турбины может быть вызвана одной из двух причин: если изменилась потребляемая электрогенератором мощность ввиду изменения подключенной к нему нагрузки потребителей, и если изменилось атмосферное давление и температура забираемого компрессором воздуха. К нестационарным режимам, причем наиболее сложным, относится остановка и пуск газотурбинной установки. При последнем машинист газотурбинных установок должен выполнить многочисленные операции перед первым толчком ротора. Перед полноценным пуском установки осуществляется предварительная раскрутка ротора.

Изменение режима работы установки осуществляется регулировкой подачи горючего в камеру сгорания. Главной задачей управления ГТУ является обеспечение нужной мощности. Исключением является газотурбинная энергетическая установка, для которой основная задача управления - постоянство частоты ращения, связанного с турбиной электрического генератора.

Применение в энергетике

В стационарной энергетике применяются ГТУ разного назначения. В качестве основных приводных двигателей электрогенераторов на тепловых электростанциях газотурбинные установки используются в основном в районах с достаточным количеством природного газа. Благодаря возможности быстрого пуска ГТУ широко применяются для покрытия пиковых нагрузок в энергосистемах в периоды максимального потребления энергии. Резервные газотурбинные агрегаты обеспечивают внутренние нужды ТЭС во время остановки основного оборудования.

КПД

В целом электрический КПД газовых турбин ниже, чем у других силовых агрегатов. Но при полной реализации теплового потенциала газотурбинного агрегата значимость этого показателя становится менее актуальной. Для мощных газотурбинных установок существует инженерный подход, предполагающий комбинированное использование двух видов турбин за счет высокой температуры выхлопных газов.

Вырабатываемая тепловая энергия идет на производство пара для паровой турбины, которая используется параллельно с газовой. Это повышает электрический КПД до 59% и существенно увеличивает эффективность использования топлива. Недостатком такого подхода является конструктивное усложнение и удорожание проекта. Соотношение производимой ГТУ электрической и тепловой энергии примерно 1:2, то есть на 10 МВт электроэнергии выдается 20 МВт энергии тепловой.

Достоинства и недостатки

К преимуществам газовых турбин относятся:

  • Простота устройства. Ввиду отсутствия котельного блока, сложной системы трубопроводов и множества вспомогательных механизмов металлозатраты на единицу мощности у газотурбинных установок значительно меньше.
  • Минимальный расход воды, которая в ГТУ требуется только для охлаждения подаваемого к подшипникам масла.
  • Быстрый ввод в работу. Для газовых турбоагрегатов время пуска из холодного состояния до принятия нагрузки не превышает 20 минут. Для паросиловой установки ТЭС пуск занимает несколько часов.

Недостатки:

  • В работе газовых турбоагрегатов используется газ с весьма высокой начальной температурой - более 550 градусов. Это вызывает трудности при практическом исполнении газовых турбин, так как требуются специальные жаростойкие материалы и особые системы охлаждения для наиболее нагреваемых частей.
  • Около половины развиваемой турбиной мощности расходуется на привод компрессора.
  • ГТУ ограничены по топливу, используется природный газ или качественное жидкое топливо.
  • Мощность одной газотурбинной установки ограничена 150 МВт.

Экология

Позитивным фактором использования ГТУ является минимальное содержание вредных веществ в выбросах. По этому критерию газовые турбины опережают ближайшего конкурента - поршневые электростанции. Благодаря своей экологичности газотурбинные агрегаты без проблем можно размещать в непосредственной близости от мест проживания людей. Низкое содержание вредных выбросов при эксплуатации ГТУ позволяет экономить средства при строительстве дымовых труб и приобретении катализаторов.

Экономика ГТУ

На первый взгляд, цены на газотурбинные установки довольно высоки, но при объективной оценке возможностей этого энергетического оборудования все аспекты встают на свои места. Высокие капиталовложения на старте энергетического проекта полностью компенсируются незначительными расходами при последующей эксплуатации. Кроме того, значительно снижаются экологические платежи, уменьшаются затраты на покупку электрической и тепловой энергии, снижается влияние на окружающую среду и население. Вследствие перечисленных причин ежегодно приобретаются и устанавливаются сотни новых газотурбинных установок.

Загрузка...